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ABSTRACT

Self-supervised learned models have been found to be very
effective for tasks such as automatic speech recognition,
speaker identification, and others. However, their utility in
speech enhancement systems is yet to be firmly established,
and perhaps slightly misunderstood. In this paper, we in-
vestigate the uses of SSL representations for single-channel
speech enhancement in challenging conditions and establish
the impact they can have on the enhancement task. Our
constraints are designed around on-device real-time speech
enhancement – model being causal, and the compute footprint
being small. Additionally, we focus on low SNR conditions
where such models struggle to provide good performance.
Index Terms: Speech Enhancement, Wav2Vec2, GCRN,
Pre-training, Knowledge Distillation, Conditioning

1. INTRODUCTION

Speech enhancement (SE) is a fundamental problems in the
domain of speech processing. Its goal is to enhance the qual-
ity (naturalness) and intelligibility of any given speech signal
with or without making apriori assumptions about the noise.
SE systems have multiple applications in real time communi-
cations, such as noise suppression in phone calls, in designing
more robust hearing aids [1], to mention a couple.

While it is a challenging problem, significant improve-
ments have been made recently in separating noisy compo-
nent from speech using supervised machine learning. These
techniques formulate it as a discriminative task where the goal
is to learn a mask to be applied to the noisy speech [2] or di-
rectly estimate the clean speech [3]. To this end, multiple
novel neural network architectures have been proposed such
as [4, 5, 6, 7, 3]. Generative modeling via diffusion meth-
ods have been suggested by authors in [8, 9, 10] to synthe-
size clean speech from noisy inputs by conditioning the pro-
cess on noisy speech. Beyond supervised training, some re-
cent works have also explored semi and self-supervised ap-
proaches [11, 12, 13, 14, 15, 16] for speech enhancement.

Moreover, there has been a surge of research in represen-
tation learning and its application in speech processing. Self-
supervised learning is aimed at learning such representations
without any human labels. Prominent models for speech rep-

resentation learning include Wav2Vec2 [17], HuBERT [18],
and WavLM [19]. The primary objective here is to capture
the phonetic and linguistic structure embedded within input
speech signals. Previous works [20, 21, 22] have proposed
leveraging these features for speech enhancement. Notably,
incorporating additional phonetic information can be benefi-
cial for enhancing speech quality [23]. Furthermore, in [22],
SSL embeddings are employed to supervise and regularize the
enhancement network. However, these enhancements have
shown some limitations, and the experiments conducted have
yet to offer comprehensive insights into their effectiveness.

In this paper, we set out to systematically investigate dif-
ferent ways of using SSL embeddings in order to improve an
SE system. We focus on on-device and real-time processing
which constrains how SSL embeddings can be used. Such SE
systems are expected to (a) be causal - no future look ahead,
and, (b) have low compute footprint. However, they may pro-
vide satisfactory performances in high-SNR conditions [24].
Therefore, the key question we study is - Can SSL embed-
dings improve on-device SE systems in low-SNR condi-
tions? In particular, we focus on using pre-trained Wav2Vec2
network to improve GCRN based SE model.

Our proposed approaches are based on using SSL net-
works as teachers for knowledge distillation, as well as, for
pre-training of the enhancement model. Along with compre-
hensive quantitative analysis we also bring an nuanced un-
derstanding of the SSL embeddings. We show that it is non-
trivial to transfer the structure and information captured by
SSL models (such as Wav2Vec2) to small student models.

2. METHOD

In this section, we describe different approaches for using
SSL model for enhancement. The input to these models is the
spectrogram representation of speech signal extracted using a
window of length 25ms and a stride of 20ms to achieve the
downsampling factor of 320. We make this choice to be con-
sistent with the Wav2Vec2 model. Note: Our experiments use
the Wav2Vec2 model as SSL model, hence SSL and Wav2Vec2
embeddings are used interchangeably throughout this paper.
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Fig. 1. GCRN model and different modes of using SSL embeddings to guide enhancement model. The right panel (red) shows
our pre-training modes. The left panel (gray) shows knowledge distillation modes and uses of SSL embeddings as inputs.

2.1. Overview
Fig. 1 shows the overview of our framework. The base en-
hancement model is a causal GCRN network which learns
a complex spectral mapping from noisy to clean speech [4].
GCRN (Fig.1) consists of a stack of down-sampling convolu-
tional layers followed by uni-directional LSTMs. The output
of LSTMs are up-sampled by a set of transposed convolutions
to generate the final output. The causal structure of GCRN fa-
cilitates streaming capability. Further, the recurrent operation
in GCRN is performed group-wise (along feature dimension)
to reduce the total number of trainable parameters to < 4M.
We analyze 3 approaches to employ SSL for improving the
base model. (a) Concatenation: (Sec. 2.2) In this case the
SSL embeddings are used to condition the decoder. Clearly,
this makes the overall inference non-causal and extremely
computational, breaking the required constraint. (b) Knowl-
edge Distillation: (Sec. 2.3/2.4) Using a teacher-student
framework we study a variety of ways to distill knowledge
from the SSL model. (c) Pre-training: Lastly, we use the
SSL model to pre-train the GCRN encoder and decoder.

Mathematically, denoting the noisy speech by X, clean
speech by Y and the GCRN model as fe. The training objec-
tive of enhancement is to maximize L = SISDR(fe(X),Y)
with respect to the parameters of fe. Scale-invariant signal-
to-distortion ratio (SI-SDR) [25] is defined as follows:

SISDR(fe(X),Y) = 10 log10
∥αY∥2

∥αY − fe(X)∥2
(1)

where α = fe(X)TY
∥Y∥2 is the scaling factor of clean speech Y .

Finally, [26] showed that, intermediate features can store
important para-linguistic information for speech reconstruc-
tion. Therefore, we use Wav2Vec2 embeddings in two differ-
ent ways: (a) by using the last transformer layer output, and
(b) by convex combination of multi-layered outputs where
weights are estimated ad-hoc (weighted sum).

2.2. Wav2Vec2 Embeddings as Input
In this regime, we provide SSL embedding as an extra input
to the GCRN network. Prior works [20] have shown that con-
catenation of SSL after the bottleneck layers work better in
providing phonetic guidance. The concatenated features (bot-
tleneck + SSL) are passed via a projection layer to maintain
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Fig. 2. Different ways of knowledge distillation from
Wav2Vec2 used in this paper. (a) Sample-wise distillation via
encoder output, (b) distillation via enhanced signal (c) adver-
sarial distillation, and (d) triplet loss based distillation.

the dimensionality for up-sampling. Let gs be the SSL model
then, we minimize LE = −SISDR(fe[X, gs(X)],Y),
where gs(X) is the feature extracted from Wav2Vec2 model.

2.3. Distillation to SE Embeddings

2.3.1. Distillation via L1 Loss

In this approach, we force the output of the SE encoder to
have the same semantic information as the SSL embedding
of clean speech (Fig. 2(a)). We hypothesize that the out-
put of LSTM layers in GCRN should retain language-specific
knowledge for reconstruction. Note that, this technique uses
the Wav2Vec2 embeddings extracted from the clean signal.
The loss function in this mode can be expressed as:

LE = −SISDR(fe(X),Y) + λ× ∥gs(Y)− fenc
e (X)∥ (2)

2.3.2. Distillation via Adversarial Loss

Another way of knowledge distillation is via distribution
matching enforced through objectives such as KL-divergence.
We experiment with the distribution level matching of the
Wav2Vec2 embeddings with GCRN encoder via adversarial
loss (Fig. 2(c)) using a block-wise convolutional discrimina-
tor from [27]. Denoting the discriminator network by D, the
enhancement and discriminator objectives are:

LE = −SISDR(fe(X),Y) + λ× ∥D(fenc
e (X))− 1∥22

and, LD =
1

2
∥D(fenc

e (X))− 0∥22 +
1

2
∥D(gs(Y)− 1∥22 (3)



2.3.3. Distillation via Triplet Loss

Triplet loss enforces a similarity between the GCRN embed-
dings and Wav2Vec2 representations in the latent manifold.
Authors in [11] proposed triplet loss for unsupervised training
of speech enhancement. The goal is to maximize the margin
between the GCRN embeddings and SSL embeddings from
clean and noisy speech (Fig. 2(d)). The triplet objective is:

LE = −SISDR(fe(X),Y) + λ× LT

where, LT = max(∥a− p∥ − ∥a− n∥+m, 0) (4)

Here, a = fenc
e (X) is the GCRN encoder representations,

p = gs(Y) is the Wav2Vec2 embeddings from clean speech
and n = gs(X) is the same from noisy speech. We set the
margin m to 100, accounting for embedding dimensions.

2.4. Distillation to SE Outputs

Finally, we enforce similarity in the latent space of enhanced
and clean speech by adding a loss term between Wav2Vec2
representations of the enhanced signal and the ground-truth
speech (Fig. 2(b)). This method does not require additional
linear layer, but it backpropagates through the SSL model dur-
ing training. The overall loss function is given by:

LE = −SISDR(fe(X),Y) + λ× ∥gs(Y)− gs(fe(X))∥ (5)

2.5. Pre-training via Wav2Vec2 Embeddings

Pre-training is a popular technique to initialize model param-
eters from a related task followed by fine-tuning it on a target
task to overcome data scarcity. The hypothesis is that pre-
training might provide better initialization of model parame-
ters than random (illustration in Fig. 1’s right panel).

Encoder Pre-training: We provide noisy spectrogram as
input and predict the Wav2Vec2 embeddings as output. This
corresponds to knowledge distillation from the large scale
SSL model to the encoder of the GCRN network.

Decoder Pre-training: We pre-train the decoder to pre-
dict the clean spectrogram conditioned on the ground truth
SSL embeddings. We also experiment with the decoder train-
ing conditioned on the encoder outputs rather than ground
truth embeddings. In the former case, the residual connec-
tion based on up-sampling operation is replaced by locally
duplicating the learned features by a factor of 2.

The enhancement model is trained with complex STFT
features extracted from the noisy and clean speech pair. We
use the Adam optimizer having a fixed learning rate of 1e-3
for 4 million steps and a batch size of 200.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

We use DNS challenge [28] corpus in our experiments. The
clean speech and the noise samples are mixed at random

SNRs between -5dB and 5dB for training and validation set.
The testing set consists of 500 samples of clean speech from
Librispeech test-clean mixed with noise (from the test sets) at
a fixed -5dB SNR to simulate challenging operation scenario.

3.2. Baseline, Feature Concatenation and Distillation

We first compare different approaches outlined in Section 2.
Table. 1 summarizes the result of this experiment. The last
column of Table 1 shows the model compliance with the con-
straint set. We can see that distillation via output works best
on all three metrics, i.e. PESQ, STOI and SI-SDR while
meeting the constraints. The differences however, are very
small in practice. The base model performs relatively well
and is on par with the best model. As expected, distillation
via other modes perform poorly as the clean speech and en-
hanced speech manifolds may not have overlap.

Model PESQ STOI SI-SDR Constr.
Base 1.59 0.84 9.1 ✓

Feature Concat 1.55 0.83 8.9 ✗
Feature Concat-ws 1.60 0.84 9.3 ✗
Distillation Embed. 1.52 0.83 9.1 ✓

Distillation Embed.-ws 1.56 0.83 9.2 ✓
Distillation Output 1.60 0.84 9.3 ✓

Distillation Adversarial 1.52 0.82 7.5 ✓
Distillation Adversarial-ws 1.55 0.81 8.4 ✓

Distillation Triplet 1.56 0.81 8.5 ✓
Distillation Triplet-ws 1.57 0.83 8.9 ✓

Table 1. Baseline GCRN model and different techniques con-
sidered towards using Wav2Vec2 embeddings for enhance-
ment. Noisy PESQ: 1.11, STOI: 0.69, SI-SDR: -4.99dB

Overall, we do not observe any huge improvements over
the baseline. The main reason is due to distillation providing
a weak feedback signal, since Wav2Vec2 embeddings contain
qualitative aspects of speech in trace amounts [29].

3.3. Pre-training with SSL

We use the Wav2Vec2 embeddings of clean speech to train
the GCRN encoder. The goal is to learn the latent representa-
tion of clean speech. We also pre-train the decoder from (a)
encoder’s output and (b) SSL embeddings to generate ground
truth. We experiment with different encoder losses namely,
L1, L2 and Cosine, and pick the best one for fine-tuning.

Table. 2 summarizes the result of enhancement task per-
formed directly using the pre-trained models. Note that, we
did not fine-tune this GCRN, yet the model manages to do
some form of enhancement. Further, we can see that when
we train the decoder directly from SSL embeddings, the in-
telligibility of generated speech is higher. In fact, we obtain
a word error rate of < 20% upon decoding the reconstructed
speech using Speechbrain [30]. Therefore, SSL captures the



Encoder Loss/Decoder Input PESQ STOI WER %
L1/Frozen 1.24 0.74 71.2

L1/Wav2Vec2 1.25 0.83 7.4
L2/Frozen 1.22 0.73 76.7

L2/Wav2Vec2 1.24 0.81 16.5
Cosine/Frozen 1.21 0.72 79.4

Cosine/Wav2Vec2 1.29 0.82 12.5

Table 2. Pre-training of speech enhancement model using
SSL. Noisy PESQ: 1.11, STOI: 0.69, SI-SDR: -4.99dB
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Fig. 3. Wav2Vec2: Box plot of (a) correlations and (b) Eu-
clidean distances obtained from frames of Wav2Vec2 embed-
dings separated by 20ms, 60ms, 400ms, 1sec and 2sec.

phonetic information but completely ignores other aspects of
speech such as tonality, loudness and voice quality.

Finally, we pick the model trained with L1 loss on en-
coder for fine-tuning on the enhancement task. Table. 3 shows

Encoder Loss / Decoder Input PESQ STOI SI-SDR
L1/Frozen 1.53 0.83 8.60

L1/Wav2Vec2 1.54 0.84 8.90

Table 3. Speech enhancement assessment from fine-tuned
models. Noisy PESQ: 1.11, STOI: 0.69, SI-SDR: -4.99dB

that pre-training does not help in speech enhancement task. In
fact, the model performance worsens slightly compared to the
baseline (see Table. 1). We conjecture that this happens due to
two main reasons: first, the Wav2Vec2 embeddings only cap-
ture the information required for reconstruction of smoothed
quantized features. Second, it is challenging to distill knowl-
edge from large SSL models due to structure of embeddings
themselves. We discuss this phenomenon in next subsection.

3.4. Structure of Wav2Vec2 embeddings

We analyze the features from Wav2Vec2 for a variety of ut-
terances and show the interesting correlation patterns in these
embeddings. Fig. 3 shows the box plot of correlations and
L2 norm between features separated by 20ms, 60ms, 400ms,
1sec and 2sec, respectively. We can see that the features are
highly correlated only until 60ms (typical phoneme length),
but are similar in magnitude (Euclidean distance) throughout
an utterance. It means that phonetic content is stored in the
small magnitude variations between frames. Capturing such
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Fig. 4. Distilled model: Box plot of (a) correlations and (b)
Euclidean distances obtained from frames of Wav2Vec2 em-
beddings separated by 20ms, 60ms, 400ms, 1sec and 2sec.
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Fig. 5. Illustration of spectrograms: (a) ground truth speech
(b) speech decoded using Wav2Vec2 embeddings and (c)
speech decoded using embeddings extracted from the trained
knowledge distillation model (same encoder as Wav2Vec2).

small differences is extremely difficult. Therefore, the GCRN
encoder learns an average representation in pre-training.

3.5. Knowledge Distillation from SSL

We finally probe into the question of whether knowledge
distillation from Wav2Vec2 is possible or not. We train a
convolution-transformer stack identical to the Wav2Vec2
model to predict the embeddings using a mix of L1 and cosine
loss. Fig. 4 shows the correlation and Euclidean distance pat-
tern of embeddings obtained from the new model. Note that,
it exhibits similar characteristics as the original embeddings
from Fig. 3. However, the dip in correlation and increase in
L2 distance is lower than the pre-trained. Fig. 5 shows speech
generation from the GCRN decoder when prompted with
original Wav2Vec2 embeddings (Fig. 5(b)) and the embed-
dings extracted from the distilled encoder (Fig. 5(c)). We can
see that the original Wav2Vec2 embeddings allow the recon-
struction of energy in the higher frequency bands whereas,
the distilled model completely loses that information.

4. CONCLUSION

We have explored different mechanisms to leverage Wav2Vec2
representation for speech enhancement. We showed that un-
der causal, on-device and low-SNR constraints, SSL model
adds very little value in improving the baseline model. We
hypothesized that the SSL embeddings retain only the pho-
netic/linguistic component of speech and ignore the quali-
tative aspects which was confirmed by the experiments. In
addition, we showed that the structure of SSL embeddings
makes it difficult to pre-train a small encoder. These features
are difficult to reproduce even with an expressive model, due
to the phonetic details encoded in tiny variations across time.
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[9] Joan Serrà, Santiago Pascual, Jordi Pons, R. Oguz Araz, and Davide
Scaini, “Universal speech enhancement with score-based diffusion,”
2022.

[10] Yen-Ju Lu, Zhong-Qiu Wang, Shinji Watanabe, Alexander Richard,
Cheng Yu, and Yu Tsao, “Conditional diffusion probabilistic model for
speech enhancement,” in ICASSP 2022 - 2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2022,
pp. 7402–7406.

[11] Yangyang Xia, Buye Xu, and Anurag Kumar, “Incorporating real-
world noisy speech in neural-network-based speech enhancement sys-
tems,” 2021 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 564–570, 2021.

[12] Efthymios Tzinis, Yossi Adi, Vamsi K Ithapu, Buye Xu, Paris
Smaragdis, and Anurag Kumar, “Remixit: Continual self-training of
speech enhancement models via bootstrapped remixing,” IEEE Journal
of Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1329–1341,
2022.

[13] Ying Cheng, Mengyu He, Jiashuo Yu, and Rui Feng, “Improving
multimodal speech enhancement by incorporating self-supervised and
curriculum learning,” in ICASSP 2021-2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2021, pp. 4285–4289.

[14] Yang Xiang and Changchun Bao, “A parallel-data-free speech enhance-
ment method using multi-objective learning cycle-consistent generative
adversarial network,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 28, pp. 1826–1838, 2020.

[15] Takuya Fujimura, Yuma Koizumi, Kohei Yatabe, and Ryoichi
Miyazaki, “Noisy-target training: A training strategy for dnn-based
speech enhancement without clean speech,” in 2021 29th European
Signal Processing Conference (EUSIPCO). IEEE, 2021, pp. 436–440.

[16] Ryandhimas E Zezario, Tassadaq Hussain, Xugang Lu, Hsin-Min
Wang, and Yu Tsao, “Self-supervised denoising autoencoder with lin-
ear regression decoder for speech enhancement,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2020, pp. 6669–6673.

[17] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael
Auli, “wav2vec 2.0: A framework for self-supervised learning of
speech representations,” Advances in Neural Information Processing
Systems, vol. 33, pp. 12449–12460, 2020.

[18] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakho-
tia, Ruslan Salakhutdinov, and Abdelrahman Mohamed, “Hubert: Self-
supervised speech representation learning by masked prediction of hid-
den units,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 3451–3460, 2021.

[19] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu,
Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao,
et al., “Wavlm: Large-scale self-supervised pre-training for full stack
speech processing,” arXiv preprint arXiv:2110.13900, 2021.

[20] Kuo-Hsuan Hung, Szu wei Fu, Huan-Hsin Tseng, Hsin-Tien Chiang,
Yu Tsao, and Chii-Wann Lin, “Boosting Self-Supervised Embeddings
for Speech Enhancement,” in Proc. Interspeech 2022, 2022, pp. 186–
190.

[21] Zili Huang, Shinji Watanabe, Shu wen Yang, Leibny Paola Garcı́a-
Perera, and Sanjeev Khudanpur, “Investigating self-supervised learning
for speech enhancement and separation,” ICASSP 2022 - 2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6837–6841, 2022.

[22] Ori Tal, Moshe Mandel, Felix Kreuk, and Yossi Adi, “A systematic
comparison of phonetic aware techniques for speech enhancement,” in
Interspeech, 2022.

[23] Yen-Ju Lu, Chien-Feng Liao, Xugang Lu, Jeih-weih Hung, and
Yu Tsao, “Incorporating broad phonetic information for speech en-
hancement,” 2020.
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